Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(12): 4025-4040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37166481

RESUMO

Aspergillus flavus and Aspergillus fumigatus are important human pathogens that can infect the lung and cornea. During infection, Aspergillus dormant conidia are the primary morphotype that comes in contact with the host. As the conidial surface-associated proteins (CSPs) and the extracellular proteins during the early stages of growth play a crucial role in establishing infection, we profiled and compared these proteins between a clinical strain of A. flavus and a clinical strain of A. fumigatus. We identified nearly 100 CSPs in both Aspergillus, and these non-covalently associated surface proteins were able to stimulate the neutrophils to secrete interleukin IL-8. Mass spectrometry analysis identified more than 200 proteins in the extracellular space during the early stages of conidial growth and germination (early exoproteome). The conidial surface proteins and the early exoproteome of A. fumigatus were enriched with immunoreactive proteins and those with pathogenicity-related functions while that of the A. flavus were primarily enzymes involved in cell wall reorganization and binding. Comparative proteome analysis of the CSPs and the early exoproteome between A. flavus and A. fumigatus enabled the identification of a common core proteome and potential species-specific signature proteins. Transcript analysis of selected proteins indicate that the transcript-protein level correlation does not exist for all proteins and might depend on factors such as membrane-anchor signals and protein half-life. The probable signature proteins of A. flavus and A. fumigatus identified in this study can serve as potential candidates for developing species-specific diagnostic tests. KEY POINTS: • CSPs and exoproteins could differentiate A. flavus and A. fumigatus. • A. fumigatus conidial surface harbored more antigenic proteins than A. flavus. • Identified species-specific signature proteins of A. flavus and A. fumigatus.


Assuntos
Aspergillus , Proteoma , Humanos , Proteoma/análise , Aspergillus/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus flavus/metabolismo , Proteínas de Membrana/metabolismo , Esporos Fúngicos/metabolismo
2.
Front Cell Infect Microbiol ; 11: 643312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718288

RESUMO

Although belong to the same genus, Aspergillus fumigatus is primarily involved in invasive pulmonary infection, whereas Aspergillus flavus is a common cause of superficial infection. In this study, we compared conidia (the infective propagules) of these two Aspergillus species. In immunocompetent mice, intranasal inoculation with conidia of A. flavus resulted in significantly higher inflammatory responses in the lungs compared to mice inoculated with A. fumigatus conidia. In vitro assays revealed that the dormant conidia of A. flavus, unlike A. fumigatus dormant conidia, are immunostimulatory. The conidial surface of A. fumigatus was covered by a rodlet-layer, while that of A. flavus were presented with exposed polysaccharides. A. flavus harbored significantly higher number of proteins in its conidial cell wall compared to A. fumigatus conidia. Notably, ß-1,3-glucan in the A. flavus conidial cell-wall showed significantly higher percentage of branching compared to that of A. fumigatus. The polysaccharides ensemble of A. flavus conidial cell wall stimulated the secretion of proinflammatory cytokines, and conidial cell wall associated proteins specifically stimulated IL-8 secretion from the host immune cells. Furthermore, the two species exhibited different sensitivities to antifungal drugs targeting cell wall polysaccharides, proposing the efficacy of species-specific treatment strategies. Overall, the species-specific organization of the conidial cell wall could be important in establishing infection by the two Aspergillus species.


Assuntos
Aspergillus fumigatus , Aspergillus , Animais , Aspergillus flavus , Parede Celular , Camundongos , Esporos Fúngicos
3.
Ocul Immunol Inflamm ; 29(3): 579-586, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31746662

RESUMO

Purpose: Rapidly progressing cataract is one of the ocular manifestations in leptospiral uveitis patients. We examined whether molecular mimicry between the leptospira antigens and lens proteins exists that could result in cataract in these patients.Methods: Immunoblot analysis using patient sera was done with proteins from normal lens and cataract lens from leptospiral uveitis patients and the cross-reacting lens proteins were identified by mass spectrometry analysis.Results: Retinal dehydrogenase 1 and crystallins (α-B, α-A2, ß-B2), were recognized by the antibodies in the serum of leptospiral uveitis patients. And, retinal dehydrogenase 1 is homologous to the leptospiral protein, betaine aldehyde dehydrogenase.Conclusions: Leptospiral uveitis patient serum contains antibodies that cross-react with multiple lens proteins that have a role in maintaining lens transparency. And, these antibodies could act as a potential trigger for cataractogenesis.


Assuntos
Betaína-Aldeído Desidrogenase/imunologia , Catarata/imunologia , Cristalino/enzimologia , Leptospira/enzimologia , Leptospirose/imunologia , Mimetismo Molecular/fisiologia , Retinal Desidrogenase/imunologia , Uveíte/imunologia , Sequência de Aminoácidos , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Catarata/microbiologia , Reações Cruzadas/imunologia , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Infecções Oculares Bacterianas/imunologia , Infecções Oculares Bacterianas/microbiologia , Humanos , Immunoblotting , Leptospirose/microbiologia , Espectrometria de Massas , Dados de Sequência Molecular , Uveíte/microbiologia
4.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32571987

RESUMO

Even though both cellular and humoral immunities contribute to host defense, the role played by humoral immunity against the airborne opportunistic fungal pathogen Aspergillus fumigatus has been underexplored. In this study, we aimed at deciphering the role of the complement system, the major humoral immune component, against A. fumigatus Mass spectrometry analysis of the proteins extracted from A. fumigatus conidial (asexual spores and infective propagules) surfaces opsonized with human serum indicated that C3 is the major complement protein involved. Flow cytometry and immunolabeling assays further confirmed C3b (activated C3) deposition on the conidial surfaces. Assays using cell wall components of conidia indicated that the hydrophobin RodAp, ß-(1,3)-glucan (BG) and galactomannan (GM) could efficiently activate C3. Using complement component-depleted sera, we showed that while RodAp activates C3 by the alternative pathway, BG and GM partially follow the classical and lectin pathways, respectively. Opsonization facilitated conidial aggregation and phagocytosis, and complement receptor (CR3 and CR4) blockage on phagocytes significantly inhibited phagocytosis, indicating that the complement system exerts a protective role against conidia by opsonizing them and facilitating their phagocytosis mainly through complement receptors. Conidial opsonization with human bronchoalveolar lavage fluid (BALF) confirmed C3 to be the major complement protein interacting with conidia. Nevertheless, complement C2 and mannose-binding lectin (MBL), the classical and lectin pathway components, respectively, were not identified, indicating that BALF activates the alternative pathway on the conidial surface. Moreover, the cytokine profiles were different upon stimulation of phagocytes with serum- and BALF-opsonized conidia, highlighting the importance of studying interaction of conidia with complement proteins in their biological niche.


Assuntos
Aspergillus fumigatus/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Complemento C3/imunologia , Polissacarídeos Fúngicos/farmacologia , Macrófagos/efeitos dos fármacos , Soro/imunologia , Esporos Fúngicos/imunologia , Aspergilose/genética , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/química , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Parede Celular/química , Parede Celular/imunologia , Ativação do Complemento/efeitos dos fármacos , Complemento C3/genética , Citocinas/biossíntese , Citocinas/imunologia , Polissacarídeos Fúngicos/imunologia , Polissacarídeos Fúngicos/isolamento & purificação , Galactose/análogos & derivados , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/imunologia , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mananas/imunologia , Mananas/isolamento & purificação , Mananas/farmacologia , Proteínas Opsonizantes/farmacologia , Fagocitose/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Espécies Reativas de Oxigênio , Soro/química , Soro/microbiologia , Esporos Fúngicos/química , beta-Glucanas/imunologia , beta-Glucanas/isolamento & purificação , beta-Glucanas/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-32435625

RESUMO

Aspergillus flavus and Fusarium solani are the predominant causative agents of mycotic keratitis in the tropical part of the world. Tear proteins play a major role in the innate immune response against these fungal infections as has been shown by the presence of complement proteins and neutrophil extracellular trap proteins in keratitis patients tear. In this study, we established the presence of the components of the alternate pathway of complement system and their functional state in the tear film of mycotic keratitis patients. The complement proteins namely, C3 and CFH were found only in the open-eye tear of patients but not in control individuals. In vitro analysis showed binding of purified C3b and CFH to fungal spores, which confirmed that the spores can provide a foreign surface for forming the complement complex. Analysis of spore bound tear proteins by mass spectrometry exhibited the presence of known proteins of the alternate pathway complement cascade in keratitis patient tear. Hemolytic assay using rabbit RBC confirmed the presence of a functional alternate pathway of complement cascade in the tear proteome of the patients. The presence of negative regulators, CFH and CFI, in the patient tear indicate that the complement activity is tightly regulated during fungal infection. Mass spectrometry data show vitronectin and clusterin, two known inhibitors of the membrane attack complex only in the patient tear. These data demonstrate the activation of the alternate pathway of complement cascade during the early stages of infection. Interestingly, the production of multiple negative regulators of complement cascade implies the pathogen can effectively evade the host complement system during infection.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Animais , Aspergillus flavus , Proteínas do Sistema Complemento , Fusarium , Humanos , Coelhos
6.
Data Brief ; 23: 103817, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372461

RESUMO

Fungal keratitis is a major sight-threatening corneal infection: and mycotic keratitis is more common in tropical parts of the world including India. Aspergillus flavus and Fusarium are the predominant causative agents of corneal infection. We extracted conidial surface proteins of A. flavus from saprophyte and clinical isolates and analyzed the proteins using high resolution mass spectrometry. The data revealed ecotype specific alteration in surface proteome since the proteome profile of the clinical isolates and saprophyte showed significant differences. Detailed examination of the mass spec data of RodA proteins extracted from polyacrylamide gels revealed the presence of two proteoforms of this protein. We also identified the mechanism of formation of these two isoforms. Detailed analysis of this data and the conclusions derived are described in the article, "Identification of the proteoforms of surface localized Rod A of A. flavus and determination of the mechanism of proteoform generation" [1].

7.
J Proteomics ; 193: 62-70, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30557665

RESUMO

Fungal keratitis is a serious, potentially sight-threatening corneal infection that is more prevalent in the tropical parts of the world including India, and A. flavus and Fusarium solani are the predominant etiological agents. The surface of fungal conidia is covered by hydrophobin family proteins, effectively masking the conidial antigens from immune cells. In this study, we report that the outer cell wall layer of A. flavus conidia contain Rod A as well as other hydrophobins, which could be extracted by formic acid. Analysis of these surface proteins by mass spectrometry showed the presence of rodlet forming hydrophobins and other membrane and antigenic proteins. Our analysis revealed that Rod A existed as two proteoforms on the conidial surface. These proteoforms were separated using polyacrylamide gel electrophoresis and the amino acid sequence of these proteoforms was determined by high resolution mass spectrometry. PCR analysis of the mRNA encoding the Rod A showed the retention of intron one, which results in the formation of a truncated proteoform two. This is the first report in which the presence of RodA and its proteoforms and their mechanism of formation has been demonstrated in the corneal pathogenic fungus A. flavus. SIGNIFICANCE: A. flavus is a common fungal pathogen in tropical countries playing a predominant role in causing mycotic keratitis in humans. Surface of fungal conidia is immunologically inert primarily due to the hydrophobin family proteins forming a rodlet layer and masking the conidia from immune cells. In this study we demonstrated the existence two proteoforms of RodA/hydrophobin A and intron retention is shown to be responsible for the formation of one of the proteoforms. In addition, the spore surface proteins of A.flavus corneal isolates and saprophyte are distinctly different, which indicate the spore surface protein profile is ecotype specific. This is the first report showing the presence of two proteoforms of RodA on A.flavus conidial surface and demonstration of the mechanism of formation of the proteoforms.


Assuntos
Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Esporos Fúngicos/metabolismo , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esporos Fúngicos/genética
8.
J Proteomics ; 152: 13-21, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27789337

RESUMO

Aspergillus flavus and Fusarium sp. are primary causative agents of keratitis that results in corneal tissue damage leading to vision loss particularly in individuals from the tropical parts of the world. Proteins in the tear film collected from control and keratitis patients was profiled and compared. A total of 1873 proteins from control and 1400 proteins from patient tear were identified by mass spectrometry. While 847 proteins were found to be glycosylated in the patient tear, only 726 were glycosylated in control tear. And, some of the tear proteins showed alterations in their glycosylation pattern after infection. Complement system proteins, proteins specific for neutrophil extracellular traps and proteins involved in would healing were found only in the patient tear. The presence of these innate immune system proteins in the tear film of patients supports the previous data indicating the involvement of neutrophil and complement pathways in antifungal defense. High levels of wound healing proteins in keratitis patient tear implied activation of tissue repair during infection. The early appearance of the host defense proteins and wound healing response indicates that tear proteins could be used as an early marker system for monitoring the progression of pathogenesis. Identification of negative regulators of the above defense pathways in keratitis tear indicates an intricate balance of pro and anti-defense mechanisms operating in fungal infection of the eye. SIGNIFICANCE: Tear proteins from control and mycotic keratitis patients were separated into glycoproteins and non-glycosylated proteins and then identified by mass spectrometry. Tear proteins from keratitis patients showed alteration in the glycosylation pattern indicating the alteration of glycosylation machinery due to infection. Neutrophil extracellular traps specific proteins, complement pathway proteins, as well as wound healing proteins, were found only in patient tear showing the activation of antifungal defense in the patient tear. Negative regulators of these defense pathways were also found in patient tear indicating a fine balance between pathogen clearance and host tissue destruction during fungal infection depending upon the individual specific host - pathogen interaction. This understanding could be used to predict the progression and outcome of infection.


Assuntos
Aspergillus flavus/patogenicidade , Proteínas do Olho/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Aspergilose , Ativação do Complemento , Infecções Oculares Fúngicas , Proteínas do Olho/imunologia , Feminino , Glicoproteínas/metabolismo , Glicosilação , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ceratite/microbiologia , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Cicatrização , Adulto Jovem
9.
Data Brief ; 9: 888-894, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27872886

RESUMO

Fungal keratitis is one of the leading causes of blindness in the tropical countries affecting individuals in their most productive age. The host immune response during this infection is poorly understood. We carried out comparative tear proteome analysis of Aspergillus flavus keratitis patients and uninfected controls. Proteome was separated into glycosylated and non-glycosylated fractions using lectin column chromatography before mass spectrometry. The data revealed the major processes activated in the human host in response to fungal infection and reflected in the tear. Extended analysis of this dataset presented here complements the research article entitled "Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection [1]" (Jeyalakhsmi Kandhavelu, Naveen Luke Demonte, Venkatesh Prajna Namperumalsamy, Lalitha Prajna, Chitra Thangavel, Jeya Maheshwari Jayapal, Dharmalingam Kuppamuthu, 2016). The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE:PXD003825.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...